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ABSTRACT 
This paper presents a spectral multidomain method for solving the Navier-Stokes equations in the 
vorticity-stream function formulation. The algorithm is based on an extensive use of the influence matrix 
technique and so leads to a direct method without any iterative process. Numerical results concerning the 
Czochralski melt configuration are reported and compared with spectral monodomain solutions to show 
the advantage of the domain decomposition for such a problem which solution presents a singular behaviour. 
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INTRODUCTION 
The spectral methods have now evolved to a stage where their advantages and drawbacks have 
been well surrounded. They have in essence one of the major feature which any method should 
have in theory but are unfortunately lacking in many cases, which is in instance: "high accuracy". 
High accuracy can be achieved in classical methods (FV, FD, FE) by increasing essentially the 
mesh resolution and/or by introducing higher order schemes. However, the cost, in terms of 
memory and CPU, can be too excessive even for very powerful computers. It is one of the major 
reasons why spectral methods have been very attractive. They can be used very efficiently for 
calculating smooth solutions in rectangular domains with fewer nodes. This high accuracy may 
be lost however when the solution presents large gradients far from the boundaries or a singularity, 
for example due either to a discontinuity in the boundary conditions or to the geometry itself. 
Therefore, for such kind of problems, special treatments are necessary to recover either the 
"spectral accuracy" or, in the singular case, a sufficiently high precision. Some of these techniques 
are adaptive coordinate transformations1,2 and domain decomposition3-6. 

We are interested here in the numerical approximation of solutions of the Navier-Stokes 
equations which exhibit a local singularity. The way considered is to use a domain decomposition 
technique in order to isolate the singularity at a corner of subdomains and to represent the 
solution in each subdomain by different Chebyshev polynomial approximations. The method is 
applied to the solution of the axisymmetric Navier-Stokes equations in the vorticity-stream 
function formulation coupled with an equation for the temperature and another for the azimuthal 
velocity. The algorithm is based on the influence matrix technique7-10. The aim of this approach 
is to obtain in a direct way, i.e. without iterative process, the values of the vorticity, the stream 
function, the azimuthal velocity and the temperature at the interface between two subdomains, 
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insuring the continuity of the normal derivatives of all variables. The values of the vorticity at 
the physical boundaries insuring the no-slip condition are obtained also through an influence 
matrix technique. When all these values are known, only independent Helmholtz equations with 
Dirichlet conditions have to be solved in each subdomain. Most of the Helmholtz problems 
involved in the method are time-independent and can be solved in a preprocessing stage before 
starting the time integration. The continuity influence matrix (CIM) and the boundary influence 
matrices (BIM) are also constructed and inverted once for all in the preprocessing stage. 

The method described above has been applied to an industrial widely used crystal growth 
technique, more precisely the Czochralski crystal growth technique. This technique has been 
mainly used to obtain a large percentage of semiconductor crystals grown for the semiconductor 
industry. It is well documented in References 11 and 12. The modelling and understanding of 
heat and mass transfer have become an important issue in the optimisation of such a technique 
to grow more uniform and better quality crystals. The combination of natural convection due 
to thermal gradients between the crystal and the crucible and to forced convection due to rotation 
of the crystal and/or the crucible leads to problems which are complex in terms of the severity 
of the regimes developed inside such apparatus. Furthermore, the change in boundary 
conditions at the junction point between the crystal and the melt induces a singularity in the 
solution. The upper surface of the domain (Figure 1) presents two types of boundary condition 
for the velocity: noslip condition corresponding to the crystal interface and stress-free condition 
corresponding to the melt free surface. In some situations, the boundary conditions for the 
temperature can change also: the crystal interface is conducting while the melt surface is assumed 
to be adiabatic. In order to solve accurately this problem with spectral methods, the global 
domain has been decomposed into two subdomains where one subdomain lies below the crystal 
and the other below the melt free surface. 

After describing the physical and mathematical problem of the Czochralski growth technique, 
we present the spatial and temporal discretizations for all equations and the algorithms for the 
monodomain method. Then we describe the behaviour of the boundary influence matrix for 
various types of configurations in a rectangular geometry. The multidomain algorithm is described 
thoroughly for the Stokes problem associated with the above physical problem and we discuss 
one of the original aspects of this paper which has been, besides the direct multidomain algorithm, 



TECHNIQUE FOR THE COMPUTATION OF THE CZOCHRALSKI MELT CONFIGURATION 33 

the accurate handling with spectral methods of singularities arising at the physical boundaries 
of the computational domain. Then, a numerical comparison is made between the monodomain 
and the multidomain approaches and we show that the present multidomain technique allows 
the use of Chebyshev approximations without significant loss of accuracy. 

PHYSICAL PROBLEM AND MODELLING 
The physical model consists in a vertical cylinder of axis (0z), of radius Rc, filled with a melt 
until the height H. The free surface of the melt is partially limited by a crystal of radius Rx 
(Rx < Rc), which can be in rotation with the angular velocity Ωx around the axis (0z) (see Figure 
1). In practice, the crucible is generally also in rotation around its axis in the opposite direction 
of the crystal. However, we consider it unmoved in the limits of this paper. 

Transient and steady laminar flows are considered with the assumption of axisymmetry. The 
fluid is initially at rest; then a difference of temperature is applied between the crystal and the 
crucible and/or the crystal rotates around its axis. 

The governing equations are the Navier-Stokes equations within the Boussinesq approximation. 
We chose Rc as the characteristic length, v/Rc as the characteristic velocity and as the 
characteristic time. The dimensionless physical parameters are: 

gap ratio 

radius ratio 

Rotation Reynolds number of the crystal 

Prandtl number 

Grashof number 

where v is the kinematic viscosity, g the gravity, x the thermal diffusivity, β the thermal volume 
expansion coefficient, Tc the temperature of the crucible and T0 the temperature of the crystal. 

The dimensionless equations are: 

where: 
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T is the temperature and v the azimuthal velocity. The vorticity ω is defined by: 

and the stream function ψ is linked to the velocity components u and w by the formulas: 

These equations are solved with the following boundary conditions: 

For the temperature T: 
The vertical wall of the crucible is heated and its lower wall is adiabatic. The crystal is cold 

and a flux equal to zero is imposed on the axis. For the free surface of the melt, we suppose 
either a linear variation of temperature (case 1) or an adiabatic surface (case 2, only in the 
multidomain case). These conditions write: 

For the azimuthal velocity v: 
The azimuthal velocity v is equal to zero on the crucible walls and on the axis. On the crystal, 
v varies linearly with the radius and a stress-free condition is prescribed on the free surface. 
Therefore these conditions write: 

For (ω, ψ): 
Noslip conditions are prescribed on the crucible walls and on the crystal. On the axis, we 

have the symmetry conditions and, on the free surface, the stress-free conditions. These conditions 
write for ω and ψ: 
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Initial condition: The fluid is initially at rest: 
u=0 , w = 0 therefore ω=0, (9a) 
v=0 (9b) 
T=0 for 0≤r≤y and 0≤z≤α, (9c) 

NUMERICAL APPROXIMATION 

Time-discretization 
The time-discretization is done through the second order semi-implicit scheme introduced by 

Vanel et al.8. It is a three-level scheme with a fully implicit discretization of the diffusive terms 
and an Adams-Bashforth evaluation of the non-linear convective terms. It has been found by 
Ouazzani et al.10 that such a scheme has good properties of stability. For the temperature 
equation, for example, it writes: 

For the azimuthal velocity and the vorticity equations, the equation obtained is similar except 
that the terms v/r2 and ω/r2 are also considered at level n +1 . The scheme involving three time 
levels, the initialization requires a special treatment. Therefore, for the first time-step (that is 
n = l), we take: 

Φ-1 = Φ)0 for Φ = ω , T , v 
that gives a first-order scheme. 

Finally, with 

the equations to be solved at each time-cycle are: 

To these equations we must add the boundary conditions given in the previous section. 
The temperature and the azimuthal velocity are calculated first and independently. Then, their 

values at level n+1 are included in the right hand side of the vorticity equation. And finally, 
the solution of the Stokes-type problem gives ω andψ. 
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Space-approximation 
First, we use a coordinate transformation (r, z)->(Y,Z) to change the physical domain into 

the square domain —1≤7, Z ≤ 1 , in which the Chebyshev polynomials are defined. Each 
dependent variable is sought in the approximation space PNM, composed by the polynomials of 
degree at most equal to N in the y-direction and to M in the Z-direction. The collocation points, 
which are respectively the zeros of (1 — Y2)T'N(Y) and (1 —Z2)T'M(Z), are defined by: 

By using these collocation points, the first order derivatives can be expressed by formulas of 
the type: 

The coefficients are expressed in the form of sinusoidal functions (see Appendix) which 
was found by Rothman13 to reduce round-off errors. These formulas were also used by 
Ouazzani14. For the second order, the differentiation matrices are calculated from the square 
of the first order ones defined by (16). The nonlinear terms appearing in the right-hand-side of 
equations (11)-(14) are calculated through the pseudospectral technique making use of F.F.T 
algorithms. 

At this point, we introduce some notations which will be used in the following sections. We 
note Г the boundary of the domain Ω (see Figure 2): Let us note ΩC 
the set of the collocation points inside the domain Ω: 

Ωc = {(Yi,Zj), l ≤ i ≤ N - l , ≤ j≤M-1}, 
and Гc the set of the collocation points belonging to the boundary Г: 

INFLUENCE MATRIX TECHNIQUE 
The multidomain method developed in the present study is based on an extensive use of the 
well-known influence matrix technique considered in References 8 and 9 to handle the no-slip 
boundary conditions when solving the Stokes and Navier-Stokes equations. In order to make 
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clear the description of the multidomain method, we present in this section the influence matrix 
technique in the monodomain case. In particular, the important question concerning the rank of 
the influence matrix according to the type of boundary conditions will be pointed out. 

Azimuthal velocity and temperature equations 
The temperature and the azimuthal velocity equations are approximated using the collocation-

Chebyshev method associated with a full matrix diagonalization. For the azimuthal velocity 
problem (or for the temperature problem when the free surface is adiabatic), the mixing of types 
of boundary conditions on the same side of the computational domain (Dirichlet condition on 

and Neumann condition on ) led us to consider, as Pulicani 15, an influence matrix technique 
so that only Helmholtz problems with Dirichlet conditions have to be solved. Briefly, the solution 
is sought in the form: 

(17) 
where the part satisfies equation (12) with the boundary conditions (7a,b) and a homogeneous 
Dirichlet condition on and the part satisfies the homogeneous equation deduced from (12) 
with homogeneous boundary conditions instead of (7a,b). On the boundary the part is 
assumed to satisfy to the Dirichlet condition: 

= λ, 
where A is unknown and must be determined so that the Neumann condition (7c) is satisfied. 
Let us note λk, k= 1,..., K, the values of λ. at the K collocation points on belonging to the 
segment ] Yc, 1[, where Yc is the abscissa of the point C delimiting the crystal and the free surface. 
The solution v is sought in the form of the linear combination: 

The elementary solution k=1, ..., K, satisfies to the homogeneous equation deduced from 
(12) with homogeneous boundary conditions everywhere except on where: 

where δkm is the Krönecker symbol. Now, by prescribing the Neumann condition (7c) satisfied 
by v at the collocation points on we obtain an algebraic system of K equations for the K 
unknowns,λk, k = 1,..., K. 

Stokes-type problem 
In this section, we consider the calculation of the vorticity and the stream function. For the 

sake of simplicity, we note ω, ψ for (ωn+1, ψn+1. At each time cycle, the following Stokes-type 
problem must be solved: 

where Δ and Δ' are the Laplacian-type operators (5) expressed in variables Y and Z. 
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The main drawback of the vorticity-stream function formulation is the existence of two 
boundary conditions for the stream function ψ(a Dirichlet condition and a Neumann condition) 
and none boundary condition for the vorticity ψ on noslip walls ( , Г2 andГ3). On the other 
hand, ψ and ω are given on the boundaries and Г4 where ψ=0, ω=0. The difficulty associated 
with the noslip conditions is removed by using the influence matrix technique8,9. The method 
consists of seeking the solution in the form: 

The pair satisfies the equations (19a) with the given Dirichlet boundary conditions 
for ψ. On the boundaries where ω is unknown, we impose a homogeneous Dirichlet condition 
for ω. The problem to be solved is, therefore: 

This problem, consisting in two successive Dirichlet problems for a Helmholtz or Poisson 
equation, is solved using the Chebyshev-collocation method associated with a full matrix 
diagonalization. 

The pair satisfies to the homogeneous equations deduced from (19a) with homogeneous 
Dirichlet boundary conditions for On the boundaries where ω is given, we impose and 
on the other boundaries, its unknown value has_to be determined so that the Neumann 
condition for ψ is satisfied. This defines the problem : 

Then, the solution of the above problem is looked for in the form: 

where each pair i, for k= 1,..., K, is solution of the problem : 

We note that the problem like the problem reduces to the solution of successive Helmholtz 
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Table I Number of null eigenvalues of the influence matrix 

Case 

n 
K 

(a) 

2 
2N + M-5 

(b) 

1 
N + M-3 

(c) 

0 
2N-2 

(d) 

0 
M-1 

equations for the vorticity and the stream function with Dirichlet boundary conditions. In (24), 
the set is composed by K collocation points belonging to the boundaries Г2, Г3. The 
convenient value of K, i.e. the precise definition of is discussed below. 

The parameters λk, k=1, ..., K, in (23) are the values of the function X at the collocation 
points ηm belonging to . These parameters are determined so that the Neumann condition 
for ψ on the boundary n is satisfied. Hence, we obtain an algebraic system of K equations for 
the K unknowns λ k , k = 1 , . . . , K, whose matrix is called the boundary influence matrix (BIM). 

The rank of the BIM, that is the number K, has been studied in References 9 and 16 for the 
case where noslip conditions are prescribed on the whole boundary. It was found to be equal 
to 2N+2M — 8: the four corners and four supplementary points must be removed. A possible 
choice for the last four points to be removed consists in the points (Y1, 1), (YN- 1), (Y1, —1) 
and (YN-1, —1). Another possible choice is given by the points (YN-1 1), (1,Z1), (Y1, —1) and 
(—1, ZM _ 1). However, the choice is not completely arbitrary. A systematic study of the convenient 
location of the points to be removed is done in Reference 16. It can be shown that the noslip 
condition is satisfied at the removed points although it is not explicitly prescribed. The proof 
is based on the compatibility relations of polynomials at the corners. Incidentally, concerning the 
elimination of the corners, it must be pointed out that, for the second-order differential problems 
without crossed derivatives like (5), the values of the unknowns at the corners are not involved 
in the collocation Chebyshev approximation. 

Theoretical and numerical studies have been done also for cases where some part of the 
boundary conditions are noslip and others are stress-free. Let us consider, for example, the 
configurations represented in Figure 3. Numerical experiments of Chaouche17 and mathematical 
arguments of Bwemba and Pasquetti18 have determined the number of points to be removed 
for the configurations (a), (b), (c) and (d). The number of points (in addition to the corners) to 
be eliminated is equal to the number n of the BIM eigenvalues equal to zero. We give this 
number and the rank K of the BIM for each configuration in Table 1. 

The rule to determine the number of null eigenvalues (after removing the corners) is simple. 
In the cases (a)-(d), there is a zero eigenvalue attached to a corner if and only if both adjacent 
sides are noslip walls. The choice of the points to be removed is not indifferent, in particular 
the location of the eliminated points influences the condition number of the BIM. The most 
performing choice, represented on Figure 3, corresponds to points removed near the corner 
associated with the zero eigenvalue. 

For the problem treated in this paper, configuration (e), the point C acts like a corner between 
two sides with a change of boundary conditions. Therefore, none zero eigenvalue is attached to 
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this point and only one supplementary point must be removed (a zero eigenvalue attached to 
the corner (1, — 1)). We noted that a good condition number is obtained by removing the point 
(Y1 — 1) or the point (1, ZM-1). We chose here to eliminate the point (Y1 — 1). 

Finally, it must be noticed that the influence matrix method does not give the values of the 
vorticity at a noslip wall9. These values, which are needed for the evaluation of the convective 
term, are calculated by using the stream function equation written at the wall. 

The numerical results obtained for the Czochralski problem using the above described 
monodomain method will be discussed later. The discontinuity of the boundary conditions at 
the junction crystal-free surface produces a singularity in the vorticity, in the azimuthal velocity 
derivative and in the temperature one in the case of condition (6f). These singularities induce 
oscillations in the computed solutions which cannot be removed by increasing the resolution. 
In the following section, a two-domain decomposition method will be considered in order to 
isolate the singularity at a corner of the computational domain. In such a situation, the solution 
in each subdomain is singular at this corner and its polynomial approximation, different in each 
subdomain, is found to be free of oscillations. 

MULTIDOMAIN SOLUTION 
The basic problem is formed by the equations (11)-(14) with the boundary conditions (6)-(8). 
The multidomain method consists of splitting the computational domain Ω into two subdomains 
Ω1 which contains the boundary of the crystal and Ω2 which contains the free surface of the 
melt, see Figure 4), in which the polynomial approximation in the radial direction may be of 
different degree. Then, the global problem is replaced by a set of two independent problems 
which solutions are coupled by imposing the continuity of the dependent variables and of their 
first-order normal derivative at the interface, β, between the two adjacent subdomains: 

for (Φ) = (ω,ψ, T, v. The subscript 1 refers to the solution in Ω1 and the subscript 2 refers to this 
in Ω2. These conditions of continuity are satisfied using again the influence matrix technique. 

Stokes-type problem 
In this section, we present the fundamentals of the method to solve the Stokes-type problem 

for (ω, ψ). The solution method of the Helmholtz problems determining the azimuthal velocity 
v and the temperature T will follow the same main outlines with obvious simplifications. 
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Let (ωi,ψi,) be the solution of the Stokes-type problem in the subdomain Ωi,i = 1,2. It is divided 
into two parts: 

The first part satisfies to the Stokes equations (13)-(14), the physical boundary conditions 
(8) and homogeneous Dirichlet conditions on the interface. The second part , satisfies to 
the homogeneous equations deduced from (13)—(14) and homogeneous physical boundary 
conditions. Their values at the interface β are unknown: they are found by prescribing the 
continuity of the normal derivatives at the interface. 

More precisely, the pairs , i= 1,2, are solutions of: 

*Problem 

*Problem : 

where x=(l+y)/(l —γ) and Δi and the operators (5) expressed in variables Y, Z in the 
subdomain Ωi. 

The pairs i = 1,2, are solutions of: 

* Problem : 
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*Problem 

(30) 

The two uncoupled problems (27)-(28) are Stokes-type problems. They are solved using the 
monodomain influence matrix technique described previously. The rank of the influence matrix 
of each problem is determined by the type of boundary conditions as considered in Figure 3. 
Therefore, the solution in Ω1 corresponds to the configuration (c) and the solution in Ω2 to the 
configuration (b). 

The problems (29)-(30) are coupled by the unknown values λ and μ at the interface β. These 
values will be determined by requiring the continuity of the normal derivative of ω and ψ through 
β. This is done using again an influence matrix technique. The pairs , i= 1,2, are sought 
in the form of a linear combination involving 2K parameters: 

where K is the number of interior collocation points on the interface β. 
For k=1, ..., K, the pairs and satisfy to problems of type with, on 

the interface, a non null boundary condition either for the vorticity or for the stream function., 
More precisely, the problems to solve are: 

*Problem in Ω1: 

* Problem in Ω1 
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So the set of solutions built is linearly independent. Here again each problem and is 
a Stokes-type problem solved using the monodomain influence matrix technique. In Ω2, the 
pairs and for k= l , ..., K, satisfy to the same type of equations with the 
same conditions on the interface except, of course, for the physical boundary conditions (problems 

and 
We note that, taking the boundary conditions for into account, the 

parametersλk and μk are respectively the values of the functions λ and μ, introduced in (29)-(30), 
at the collocation points ηk of the interface. These parameters are determined so that the continuity 
of the normal derivatives at the interface β is satisfied. Taking the decompositions (26) and (31) 
into account, we obtain an algebraic system of 2K equations for the 2K parameters λk, μk, for 
k=1,..., K. This system writes: 

where Δ = [λ1 λK]T and M =[ μ1 ..., μK]T . The matrix A defined by: 

is the influence matrix called here the continuity influence matrix (CIM). This matrix is also 
often called 'capacitance matrix'19. Each block Anm is a square matrix K x K which depends 
only on one type of elementary solution i= l , 2, k=l K. Since these 
elementary solutions are time-independent, the matrix A is time-independent. The rank of each 
square submatrix Anm is K = M—2. The two extreme points of the interface β are removed since 
they are corners of subdomains. However, the values of ω and ψ are known at these two points. 
At point C (see Figure 4), ψ is equal to zero (given boundary condition) and ω is either calculated 
by the stream function equation on the crystal (domain Ω1) or equal to zero on the free surface 
(domain Ω2). At point C' (see Figure 4), ψ is equal to zero (given boundary condition) and ω is 
calculated by the stream function equation. 

We must note that, since the continuity of normal derivatives is not imposed at these two 
points, the Neumann boundary condition for ψ is not explicitely prescribed at point C. In fact, 
it can be proved20 that, since this condition is satisfied on all the other points of the boundaries 

and , it is also satisfied at this point. 
A constant and important question when dealing with Chebyshev polynomial approximations 

is the conditioning of the associated matrices, which may be deteriorated when the resolution 
increases. The condition number (as given by the subroutine EPIRG of IMSL library) of the 
various influences matrices is given in Table 2 (effect of the time step) and in Table 3 (effect of 
the resolution). It may be seen that the BI matrices M1 (associated with the subdomain Ω1) and 
M2 (associated with Ω2) have relatively good condition numbers. The same is true for the CI 
matrices Av and AT associated respectively with the azimuthal velocity and temperature solutions. 

Table 2 Time-step effect 
matrices for N x M =41 x 

δt 10-2 

M1 5.78 x10 - 2 

M2 5.75 x10 - 2 

Av 10-1 

AT 7.99 x10 - 2 

A 8,02 x10 - 6 

PA 2.91 x 10-1 

on the condition number of the influence 
41, with N1=N2=(N+l)/2 in the two-
domain case 

5 x l 0 - 5 5x l0 - 6 

1.47 x 10-1 

1.29x10-1 

8.91 x10-2 

5.91 x10-2 

1.04 x10 - 5 

4.43x10-1 

1.73x10-1 

5.83 x10 - 2 

1.61x10-1 

6.26 x10 - 2 

1.13 x10 - 5 

2.27 x 10-1 
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Table 3 Resolution effect on the condition number of the 
influence matrices for δt = 5x 10 -6 

N x M 

M1 
M2 
A, 
AT 
A 
PA 

41 x 41 

1.73 x 10-1 

5.83 x10 - 2 

1.61x10-1 

6.26 x10 - 2 

1.13xl0-5 

2.91 x 10-1 

55x41 

2.09 x 10-1 

9.11 x10 - 2 

1.06x10-1 

7.54 x10-2 

1.90 x 10 -5 

3.57x10-1 

55x61 

1.53x10-1 

5.34 x10 - 2 

1.07x10-1 

6.33 x 10-2 

1.55 x10 - 5 

2.58x10-1 

On the other hand, the CI matrix A associated with the Stokes problem, which is a large matrix 
2K x 2K, is generally ill-conditioned. This is due to a bad balance between its coefficients. In 
fact, the elements of the two diagonal submatrices A11 and A22, depending respectively on the 
elementary solutions are in the same order scale but, relatively to this scale, the 
elements of the submatrix A12, which depends on the solutions , are too large while those of 
the submatrix A21, which depends on the solutions are too small. This defect of balance can 
be removed by preconditioning the matrix A using a diagonal 2K x 2K matrix P such that: 

The submatrices P n and P22 are two diagonal square matrices K x K. The submatrix P11 is 
used to decrease the elements of A12 and the submatrix P2 2 for increasing those of A21. The 
elements of P11 and P22 are calculated as follows: 

The resulting matrix PA is well conditioned as it can be seen in Tables 2 and 3. Some numerical 
experiments have been done in order to compare the solutions obtained with and without 
preconditioning. For the case where the condition number of A is the worst (i.e. 8.02 x 10 -6 in 
Table 2), the difference between the two solutions is about 10 -10%. Therefore, it can be concluded 
that the computations done with the system (34) are accurate. In the present case, the use of 
preconditioning is not really necessary. On the other hand, in other situations (large number of 
subdomains, interfaces in different directions), the condition number of the CI matrix becomes 
worse and the use of preconditioning is absolutely necessary to perform the inversion. 

As already said, the elementary Stokes-type problems and for i= 1,2 and k= 1,..., K, 
are time-independent: they are solved once for all in a preprocessing stage. Hence, at each 
time-cycle, the two Stokes-type problems and are first solved. Then, using the various 
influence matrices, values of the vorticity at walls and its values as well as the ones of the stream 
function at the interface are calculated, so that the final values of the vorticity and the stream 
function at time-level n + 1 are obtained as solution of Helmholtz equations with Dirichlet 
conditions. It must be pointed out that the whole algorithm reduces to the solution of Dirichlet 
problems for Helmholtz equations. The number of problems to be solved may be very large but 
only eight of them are time-dependent. All the others are solved in the precalculation stage. At 
last, thanks to the full diagonalization procedure, the computational effort at each time cycle 
reduces to matrix products. Concerning the CPU time, we observed that the cost of the 
preprocessing stage is equal to about 56 times the cost of one time-cycle, that is negligible when 
compared to the number of time cycles (up to 40,000) needed to reach the steady state solution. 
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The algorithm used is: 
*Preprocessing stage: 

(1) Construction, inversion and storage of the BI matrix for the problems and 
and for the final problem in Ω1 
(2) Construction, inversion and storage of the BI matrix for the problems an 
and for the final problem in Ω2. 
(3) For k = l , . . . , K 

— Solution of the problem in Ω1 
— Solution of the problem in Ω2, 
→ Calculation of the kth column of the CI matrix A. 
— Solution of the problem in Ω1; 
— Solution of the problem in Ω2, 
→ Calculation of the (k+K)th column of the CI matrix A. 

(4) Preconditioning of the matrix A (optional). 
(5) Inversion of the CI matrix A and storage. 

* At each time-cycle: 
(1) — Solution of the problem 

— Solution of the problem 
— Calculation of the right hand side of (34). 
— Multiplication by the matrix P (optional). 
— Calculation of the values λk, μk for k= 1,..., K. 

(2) Solution (ωi, ψi), i = 1,2, of a problem of type or with the boundary conditions on β: 

ωi.(ηk)=λk for ηk (±1,Zk)εβc 
ψi (ηk)=μk 

INFLUENCE OF THE SINGULARITY 
The change of boundary conditions at the junction C crystal-free surface induces a singularity 
in the vorticity ω. More precisely, for the two-dimensional plane Stokes problem, it is known 
that the vorticity to behaves like p-1/2, where p is the distance to the singular point. At the same 
point the azimuthal velocity derivative, as well as the temperature one in case 2, exhibits the 
same type of behaviour, like p-1/2 for the plane Laplace equation. 

Moreover, the problem is made a little more complicated by the presence of the coordinate 
singularity at the axis r=0. The numerical results given by the monodomain as well as the 
two-domain methods show the presence of a small oscillation for the vorticity (with a larger 
amplitude in the monodomain case) below the crystal at the first collocation point near the axis. 
Numerical experiments carried out in the two-domain configuration showed that this oscillation 
disappeared when the boundary singularity is removed (noslip condition on the whole boundary) 
or if the symmetry axis r = 0 is discarded by inserting an inner radius rs=0.01. The same 
experiment (inserting an inner radius) on the monodomain configuration showed that the 
oscillation decreases but does not disappear. From these experiments, we conclude that the 
oscillation is due to the interaction between the singularity at the junction C and the coordinate 
singularity at r=0, the influence of the singular point C being more important in the monodomain 
case. This oscillation completely disappears in the multidomain solution when introducing a 
coordinate transformation in Ω1 in order to put the collocation points away from the axis. The 
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chosen coordinate transformation is: 

The multidomain results presented below for the case Rex=100 and Gr=0 were obtained 
with this coordinate transformation. 

As already mentioned, the change in boundary conditions on the crystal and on the free 
surface induces a singularity of the azimuthal velocity derivatives. Figure 5 presents the profiles 
of v; interpolated on a regular mesh with 201 points, using the Chebyshev polynomial interpolation. 
We can see that the two-domain solution is already acceptable (it presents only little oscillations 
on the free surface) for the resolution 41 x 41 while the monodomain solution exhibits large 
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oscillations. For the resolution 55 x 55, there are no oscillation on the multidomain profile but 
there are still on the monodomain one. The behaviour of v is responsible of many problems for 
the monodomain solution as large Gibbs oscillations on the profile of the tangential derivative 
on and under the boundary, and an overestimate of the maximum of the normal derivative on 
the boundary. All these anomalies do not appear on the two-domain solution. 

Let us note that the same difficulties are encountered for the temperature (in case 2) with the 
monodomain method as those encountered for the azimuthal velocity. Indeed, the temperature 
exhibits a infinite derivative at point C, as it can be seen on the temperature profile (Figure 6) 
for the two-domain solution interpolated on the 201-points regular mesh. 

Figures 7a and 7b show the vorticity profile on the boundary crystal-free surface for the 
monodomain and the two-domain solutions. We see that the singularity is much better described 
with the two-domain method. The unability of the monodomain method to capture correctly 
the solution is clearly visible on the profile of the solution interpolated on 201 equispaced points: 
this profile exhibits great oscillations, in particular near the axis (see Figure 7c). For the 
multidomain solution, the interpolation is done independently in each subdomain. So, the 
interpolation in Ω1 necessitates the value of ω at the corner (1,1), that is at the singular point. 
Theoretically, the vorticity is infinite at this point but numerically, it cannot be obtained. That 
is why no interpolated two-domain profiles on the boundary crystal-free surface are presented 
here. The vorticity profile below this boundary (at Z = 0.995) for the monodomain and for the 
two-domain solutions interpolated on the 201-points mesh are represented in Figure 8. The 
superiority of the two-domain solution is clearly visible. 

All the discontinuities increase with Rex. In order to solve the difficulties encountered for v 
and to with the monodomain method, we tried to close up the mesh in the critical passage by 
increasing the degree of the approximation but all the observed defaults increased with the 
resolution, except the oscillations on the vorticity profile at Z=0.995 that decrease but have 
not disappeared for the resolution 65 x 65 (see Figure 8). On the other hand, for the multidomain 
solution, these oscillations decrease rapidly when the resolution is increased and disappear 
completely for N1 x M1 = N2 x M2 = 33 x 65. 
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Therefore, it is clear that the monodomain method is not adapted to the problem considered 
here. The representation of a solution exhibiting an "inner" singularity with a single polynomial 
leads to large Gibbs-type oscillations which cannot be removed by increasing the resolution. 
On the other hand, by splitting the computational domain into two subdomains just at the 
junction crystal-free surface, we isolate the singularity at a corner of subdomains. Then, the 
solution is represented by two local polynomials free of oscillations. However, a deeper study 
of the numerical accuracy is necessary to know the real efficiency of the multidomain method. 

It is well known that the main advantage of the Chebyshev approximations is their high 
precision. More precisely, for functions having a continuous derivatives, the order of the error 
is 1/Nx where N is the degree of the polynomial approximation. For an indefinitely differential 
function α is greater than any positive integer: it is the spectral accuracy. In the present problem, 
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the existence of singularities forbids such an accuracy, especially in the monodomain case. It is 
interesting to determine the degree of accuracy by examining the decay of the spectral coefficients. 
Figure 9 shows the spectral coefficients ak(z) of the vorticity on two lines of collocation points 
Z = Z1 and Z=Z4 under the crystal-free surface boundary. For the resolution 65 x 65 in the 
monodomain case or 2 x (33 x 65) in the multidomain one, these points are very close to the 
singular points since Z4 = 0.981. Analogous spectra in the radial Y-direction near the interface 
(Y= Y4=0.924 in Q1 and Y= YN2_3= —0.924 in Ω2) are shown in Figure 10. From these various 
spectra, it can be concluded that the decay of the absolute values of the coefficients outside a 
small neighbourhood of the singular point ensures the accuracy of the two-domain solution. 
This is not the case for the monodomain solution. 
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COMPUTATIONAL ASPECTS 
All the computations presented here have been done with the gap ratio α = l, the radius ratio 
γ = 0.4 and the Prandtl number Pr=0.05. In order to compare the multidomain and the 
monodomain solutions we define the following characteristic variables: ψmax, the maximum value 
of ψ; ψmin, the minimum value of ψ; |V|max, the maximum value of the velocity modulus in the 
meridian plane (|V|=(u2 + w2)1/2); ResΦ, the residual on Φ defined by: 

ResΦ = Y(sup|3Φ n +1 (Yj, Zi) -4Φn(Yj, Zi) + Φn-1(Yj, Zi)|)/2δt for Φ = T, v 
and by: 

ResΦ=Y(sup|3Φ n +1 (Yj, Zi) -4Φn(Yj, Zi) + Φn-1(Yj, Zi)|)/2δt|Φ |max for Φ =ω, 
where Yj, Zi are the collocation points in the two spatial directions and 5t is the time-step. It 
must be noted that the maxima and minima are calculated on the collocation points. We are 
conscious that, consequently, the comparison will not be very precise since the location of the 
collocation points is not the same in the monodomain and in the two-domain cases for the same 
resolution. 

The details of the computations are given in Tables 4 and 5. The last column refers to the 
initial condition. For each value of the Reynolds number Rex, the initial condition is given either 
by the solution (9) or by the solution obtained for a previous value of Rex. All results presented 
here correspond to the thermal boundary condition of case 1. 

The used time-step 5t varies from 10 -2 to 5 x 10 - 6 for the monodomain solution and from 
10 -2 to 10 -5 for the two-domain one according to the values of Gr, Rex, and to the spatial 
resolution. Table 6 gives time-steps δtl and δt2, for different values of Gr and Rex so that the 
critical time-step δtc verifies δt1 ≤δtc≤δt2 . We note that, when Rex increases, the critical time-step 
is smaller for the monodomain method than for the multidomain method. 

On the Cray YMP2E computer, the computational cost for one time-cycle is 0.024 s in the 
monodomain case and 0.039 s in the two-domain case, for the same resolution NxM=41x41 
(in the multidomain case N1 = N2=(N+1)/2). So the multidomain method is not much more 
time-consuming than the monodomain method. More, for some cases, the number of modes 
necessary to have a good representation of the solution with the monodomain method can 
become very large (N x M = 55 x 73 for Gr= 105 and Rex=2000). For such a resolution the 
computational cost for one time-cycle can reach 0.071 s, and the convergence towards the steady 
state necessitates more time-cycles than in the multidomain case. 

It has been observed that the convergence towards the steady state is slower for the azimuthal 
velocity than for the other variables (in both monodomain and two-domain cases). Therefore, 
taking into account the fact that the ultimate states were known to be steady, a larger time-step 
was used for v in some cases. Let us note at last that the computation is stopped when the 
residual on v decays below a required value, Resv<10-6. 

ANALYSIS OF THE FLOWS 
This closing section is devoted to a comparison of the monodomain and the two-domain methods 
for various values of Rex (rotation of the crystal) and Gr (intensity of the heating). In the same 
time the flow configuration according to these values is described. Thermal boundary conditions 
of type 1 have been used in all the computations. The spatial resolution is 41 x 41 for the 
monodomain case and 2 x (21 x 41) for the two-domain one. At last, let us note that the coordinate 
transformation (40) has not been used for the calculations discussed in the present section. 

First, the effect of the rotation only was studied (Gr = 0). It is observed, when Rex increases 
from 100 to 1000, that the centre of the cell is rejected under the free surface of the melt by the 
more rapid rotation of the crystal. The shear of the azimuthal velocity is magnified and the 
shear layer for Rex=1000 is much more concentrated under the crystal. Concerning the 



Table 4 List of the runs for Gr = 0 

Domains 

1 

2 

1 
2 

N x M 

41x41 
51x51 
61x61 
73x73 
41x41 
49x41 
49x49 
41x41 
41x41 

Rex 

100 

100 

1000 
1000 

C 

4.37 x 1 0 - 6 

4 . 1 6 x l 0 - 6 

5.24 x10-6 

5.01 x 10 - 6 

4.85 x10-6 

4.68 x10-6 

4.81 x10-6 

7 . 1 2 x l 0 - 5 

7.89 x 10 - 5 

ψmin 

-0.200 
-0.187 
-0.221 
-0.213 
-0.224 
-0.225 
-0.225 
-4.612 
-5.074 

|V|max 

4.29 
4.10 
4.48 
4.38 
4.46 
4.46 
4.46 

72.85 
89.76 

δt 

1 0 - 2 

10-2 

10-2 

10-2 

10-2 

10-22 

10-2 

2 x l 0 - 5 

10-4 

Nc 

300 
300 
400 
450 
200 
200 
200 

4000 
16,000 

Resω 

10-9 

10-9 

10-9 

10-9 

10-9 

10-10 

10-10 

1 0 - 7 

10 - 8 

ResT 

10 - 1 2 

10-12 

10-12 

10-12 

10-11 

10-11 

10-11 

10 - 9 

10 - 9 

Resv 

10-10 

10-9 

10-9 

10-9 

10-10 

10-10 

10-10 

10-7 

10-8 

Initial condition 

sol. (9) 
sol. (9) 
sol. (9) 
sol. (9) 
sol. (9) 
sol. (9) 
sol. (9) 
fax = 100, Gr = 0 (41x41) 
fax = 100, Gr=0 (41x41) 

Nc is the Number of time-steps necessary to reach convergence. 
In the case of 2 domains, we have N 1 = N 2 = (N+l)/2. 

Table 5 List of the runs for Gr = 105 

Domains 

1 
2 
1 
2 
1 
2 
2 
1 

2 

1 
2 
2 

NxM 

41 x 41 
41x41 
41x41 
41x41 
41x41 
41x41 
41x41 
41x41 
51x51 
55x61 
55x73 
41x41 
49x49 
55x61 
41x41 
41x41 
41x41 

Rex 

10 
10 

100 
100 

1500 
1500 
1850 
2000 

2000 

2500 
2500 
3000 

ψmax 

28.55 
28.39 
28.52 
28.36 
21.21 
18.25 
9.34 

12.48 
13.76 
10.99 
10.91 
3.58 
3.56 
3.54 
1.59 
1.65 
0.622 

ψmin 

-2.29 x 10 -4 

-1 .19x l0 - 5 

-2.28 x 10 -4 

-1 .20xl0 - 5 

-1.826 
-2.510 
-4.501 
-4.058 
-3.806 
-4.310 
-4.325 
-5.271 
-5.264 
-5.295 
-6.586 
-7.698 
-9.741 

|V|max 

190.14 
189.81 
189.88 
189.53 
145.91 
128.65 
159.73 
141.36 
139.21 
142.87 
143.29 
175.53 
175.89 
175.94 
179.59 
229.15 
279.26 

δt 

5xl0-5 

5xl0-5 

2 x l 0 - 5 

5 x l 0 - 5 

l0-5 

2 x l 0 - 5 

2 x l 0 - 5 

5xl0-6 

5xl0-6 

5 x l 0 - 6 

5 x l 0 - 6 

2xl0-5 

l0-5* 
5x l0 - 6 * 
5 x l 0 - 6 

1l0-5* 
l0-5* 

Nc 

27,000 
20,000 
35,000 
20,000 
50,000 
38,000 
40,000 
60,000 
80,000 

164,000 
143,000 
80,000 
92,000 

175,000 
120,000 
57,000 
55,000 

Resω 

1 0 - 7 

10-7 

10-6 

10-7 

10-6 

10-8 

10-8 

1 0 - 5 

10-5 

1 0 - 3 

1 0 - 6 

10-8 

10-7 

10-7 

10-7 

10-8 

10-7 

ResT 

10-9 

10-9 

10-9 

10-9 

10-8 

10-9 

10-9 

10 -8 

10-8 

10-8 

10-8 

10-8 

10-8 

10-8 

10-8 

10-9 

10-8 

Resv 

10-9 

10-9 

10-7 

10-7 

10-6 

10-6 

10-7 

10-6 

10-6 

10-6 

10-6 

10-6 

1 0 - 6 

1 0 - 6 

1 0 - 6 

10-6 

10-5 

Initial condition 

sol. (9) 
sol. (9) 
Rex = 10, Gr= 105 (41x41) 
Rex= 10, Gr= 105 (41x41) 
Rex = 100, Gr= 105 (41x41) 
Rex = 1000, Gr= 105 (41x41) 
Rex= 1700, Gr= 105 (41x41) 
Rex= 1500, Gr= 105 (41x41) 
Rex = 2000, Gr=105 (41x41) 
Rex = 2000, Gr = 105 (55 x 55) 
Rex = 2000, Gr = 103 (55 x 61) 
Rex = 1500, Gr=103 (41x41) 
sol. (9) 
sol. (9) 
Rex = 2050, Gr=103 (41x41) 
Rex = 2050, Gr= 105 (41 x41) 
Rex = 2500, Gr=103 (41 x41) 

*The time-step used for v is δfv = 5δt from the 50,000th cycle to accelerate the convergence. 
•The time-step used for v is δtv = 2δt from the 50,000th cycle to accelerate the convergence. 
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Table 6 Values of the time-steps such as δt1≤δtc<δt2 for different 
values of Gr and Rex (NxM = 41x41 with N1=N2 = (N + l)/2 in 

the two-domain case) 

Domains 

1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

Gr 

0 
0 
0 
0 

105 

105 

105 

105 

105 

105 

Rex 

100 
100 

1000 
1000 

10 
10 

100 
100 

2500 
2500 

δt2 

2 x 1 0 - 2 

2x10 - 2 

5 x 1 0 - 5 

2 x 1 0 - 4 

10-4 

10-4 

5x10 - 5 

8x10-5 

6x10-6 

2x10-5 

δt1 

10-2 

10-2 

2x10-5 

10-4 

5x10-5 

5x10-5 

2x10-5 

5x10-5 

5x10 - 6 

10-5 

temperature, it can be seen that the isotherm patterns do not change very much when increasing 
Rex: they reflect conduction. Note that the monodomain azimuthal velocity exhibits oscillations 
on the free surface of the melt and at the vertical of the singular point (Figure 11). 

Then, the coupled convection with Gr= 105 was considered. For Rex<l000, the basic cell is 
dominated by convection and concentrated in the bottom of the crucible. The azimuthal velocity 
undergoes the diffusion: a maximum value appears inside the domain. It can be noted here again 
that the monodomain patterns exhibit oscillations on the free surface. The isotherm patterns 
are not shown for this case because no difference between monodomain and multidomain 
solutions is visible. However, it has been observed that their great distortion near the heated 
wall of the crucible reflects the effect of the thermal transport: it is the natural convection which 
dominates the flow. It is interesting at last to look at the iso-vorticity patterns, drawn on the 
collocation points (Figure 12): it can be noted that the monodomain solution exhibits oscillations 
at the vertical of the singular point, in the middle of the computational domain, whereas the 
two-domain one does not. Hence, the vorticity computed by the monodomain method is really 
not good. Yet, the flow configuration obtained with the two methods is the same. For Rex= 1000, 
a region where there is no meridian motion appears under the crystal. Then, when Rex is increased 
from 1000 to 1500, a second cell, contra-rotative to the cell induced by the thermal convection, 
is created in this region by the rotation of the crystal. In the region below the crystal, the fluid 
is dominated by the rotation, whereas, in the external zone, the thermal convection decreases. 
The distortion of the isothermal patterns becomes less marked. By increasing the rotation (Rex 
varies from 1500 to 2000), the flow configuration changes. It is important to note that it is 
completely different according to the method used. For the two-domain solution, the cell induced 
by the rotation of the crystal increases and reaches the same intensity of the cell induced by 
convection for Rex= 1850. The configuration of azimuthal velocity is mainly governed by a shear 
layer under the crystal which is more and more concentrated as Rex increases. For Rex=2000, 
forced convection dominates the flow, the cell due to the rotation is predominant and the isotherm 
patterns are no more distorted by thermal convection (Figure 13). For the monodomain solution, 
the cell induced by natural convection is yet predominant for Rex*=2000, the isotherm patterns 
still reflect convection (Figure 13), and for Rex = 2050, forced convection and thermal convection 
balance perfectly. For Rex>2050, the cell induced by the thermal convection is more and more 
concentrated in the external corner in the bottom of the crucible and decreases slowly until it 
becomes only a nucleus for Rex=3000. Let us note that, since Rex = 2500, the flow configuration 
is the same again with the two methods (Figure 14). The phenomenon goes with the disappearance 
of the distortion of the isotherm patterns which exhibit on the other hand a vertical stratification 
under the crystal more and more important as Rex increases. 
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It is interesting to point out the difference of the onset of domination of the forced convection 
obtained with the two methods. As already noted, we do not obtain the same solution for 
Rex = 2000 (Figure 13). Here again, it is clear that the monodomain method is not adapted to 
the considered problem. The loss of accuracy leads not only to oscillations but also, and this is 
much more important, to a shift of the threshold. This last point has been often observed when 
the computed solution is singular. 

CONCLUSION 
Through a physical problem which exhibits singularities at a boundary of the domain, the 
Czochralski crystal growth technique, it has been shown that a global approximation with a 
spectral method gives very poor results in terms of accuracy, presenting in particular very large 
oscillations and changing the threshold between two types of flow patterns. 

These drawbacks have been removed by introducing a multidomain technique. The idea was 
to work in two separate domains so that the singularity is isolated at a corner. Then the solution 
is represented by two local different polynomials. The solution method makes an extensive use 
of the influence matrix technique for the prescription of the matching conditions at the interface 
as well as the boundary conditions on the physical boundaries. The method is direct and requires 
only matrix products at each time-cycle, leading to a very efficient numerical code. 
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Expression of the differentiation matrix coefficients 
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where cO = cN = 2 and ck = 1 for k = 1 , . . . , N - 1. 


